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Abstract—Asymmetric Claisen rearrangement triggered by silyl-enolization of 2-(1 0-nonel-3 0-yloxy)indolin-3-ones was performed in
order to prepare 3-(2 0-nonenyl)-3-hydroxyindolin-2-ones. Total synthesis of 3-hydroxypyrrolo[2,3-b]indoline alkaloid, (+)-alline was
achieved by transformation of the allylic moiety of 3-(2 0-nonenyl)-3-hydroxyindolin-2-one to amine followed by reductive
cyclization.
� 2006 Elsevier Ltd. All rights reserved.
3-Hydroxyindolin-2-ones have drawn much interest
recently due to their importance as synthetic intermediates
in the synthesis of biologically active compounds.
Although a number of routes to racemic 3-hydroxy-
indolin-2-ones have already been known,1,2 there are few
synthetic methods for chiral 3-hydroxyindolin-2-ones.
The known asymmetric examples are the enantioselec-
tive Me2Zn3 and (allyl)4Sn additions,4 organocatalyzed
aldol addition5 and diastereoselective vinylogous aldol
addition to isatin derivatives,6 and the diastereoselective
arylation of mandelic acid enolates7 and dihydroxyl-
ations of 3-alkylidene-2-indolinones.8 We have recently
described a synthetic method for racemic 3-hydroxy-
indolin-2-one alkaloids through enolization-Claisen
rearrangement of 2-allyloxyindolin-3-ones.2 Herein, we
disclose an asymmetric Claisen rearrangement triggered
by silyl-enolization of 2-(1 0-nonen-3 0-yloxy)indolin-3-
ones 3 to (E)-3-(2 0-nonenyl)-3-silyloxyindolin-2-ones 5
for the first total enantioselective synthesis of the 3a-
hydroxypyrrolo[2,3-b]indoline alkaloid, alline (10).9

The starting (3 0R)-2-(1 0-nonen-3 0-yloxy)indolin-3-one 3a
was readily available by bromination of 1-acetylindolin-
3-one 1 followed by substitution with (3R)-1-nonen-3-ol
(2a, 99% ee)10 according to our reported method.11
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Initially, we examined the enolization of 3a with DBU,
DBN, and DMAP as a base under several reaction con-
ditions and the results are summarized in Table 1. The
enolization-Claisen rearrangement of 3a with DBN at
0 �C in toluene followed by deacetylation with LiOH
afforded (+)-3-(2 0-nonenyl)-3-hydroxyindolin-2-one 4
in 98% yield, but its optical purity was low (Table 1, en-
try 2). When DMAP was used instead of DBN, the reac-
tion, even at room temperature, was slow to result in a
low yield of (+)-4, but the optical purity was fairly
improved (entry 5). The low stereoselectivity may be
caused by indistinguishable predominance between the
boat-like A and chair-like transition states B in the
Claisen rearrangement (Scheme 1).

Next, we attempted the O-silylation of 3a to define the
predominance among possible transition states in the
Claisen rearrangement (Table 2).12,13 When 3a was trea-
ted with TMS chloride in the presence of DMAP in
CH2Cl2 at �20 �C, the desired reaction did not proceed
at all (Table 2, entry 1). On using DBU instead of
DMAP, silyl-enolization-Claisen rearrangement 3a took
place smoothly via the more stable chair-like transition
state D to give 3-(2 0-nonenyl)-3-silyloxyindolin-2-one
5a in 89% yield (entries 2 and 3). The optical purity
(85–86% ee) was determined by chiral HPLC analysis
of (+)-4 obtained through deacetylation and desilylation
of 5a with LiOH. A similar reaction with TMS triflate in
the place of TMS chloride worked out (entry 4), but the
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Scheme 1. Reagents and conditions: (i) Br2, CH2Cl2, 0 �C, 0.5 h, then (3R)-1-nonen-3-ol (2a), MS-4 Å, MeCN–DMF (10:1), rt, 4 d, 56%; (ii) base,
solv., temp, then 10% LiOH, MeOH, 0 �C.

Table 2. Silyl-enolization-Claisen rearrangement

Entry R3Si–X Base Temp (�C) Time (h) 5 Yield (%) (+)-4 Yield (%) [% ee]a

1 TMS–Cl DMAP �20 24 — —
2 TMS–Cl DBU �20 10 89 91d [85]
3 TMS–Cl DBU �30 11 89 94d [86]
4 TMS–OTf DBU �20 16 89 81d [88]
5 TES–OTf DBU �20 36 65b 66e [63]
6 TBS–OTf DBU �20 36 13c 68e [81]

a The % ee was determined by chiral HPLC analysis of (+)-4.
b Starting material 3a was recovered in 16% yield.
c Starting material 3a was recovered in 86% yield.
d Deprotection with LiOH was performed.
e Deprotection with LiOH and TBAF was carried out.

Table 1. Enolization-Claisen rearrangement

Entry Base Solv. Temp (�C) Time (+)-4 Yield (%)a [% ee]b

1 DBN Toluene rt 2 h 93 [28]
2 DBN Toluene 0 5 h 98 [32]
3 DBN CH2Cl2 0 5 h 93 [32]
4 DBU Toluene 0 0.2 h 83 [17]
5 DMAP Toluene rt 3 days 37c [61]

a Two-step yield from 3a.
b The % ee was determined by chiral HPLC analysis of 4.
c Starting material 3a was recovered in 39% yield.
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use of TES and TBS triflates as a bulky silylating agent
resulted in reduced reaction rate, yield, and stereoselec-
tivity (entries 5 and 6). To sum up, the suitable reaction
protocol for preparation of (+)-4 is shown in entry 3
(Scheme 2).

The (R)-configuration at the 3 position of (+)-4 was con-
firmed by transformation to furo[2,3-b]indoline 8 as
follows. The TBS protection of the hydroxyl group in
(+)-4,14 ozonolysis of (+)-6 followed by NaBH4-reduc-
tion, and reductive cyclization of (+)-7 with NaBH4 in
THF afforded (�)-8, of which the spectral data and spe-
cific rotation were identical with those of the authentic
(3aR)-(�)-3a-hydroxyfuro[2,3-b]indoline (Scheme 3).15

Next, we attempted to apply 3-hydroxyindolin-2-one 4
to a total synthesis of the pyrrolo[2,3-b]indoline alkaloid
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alline (10), which was isolated from Allium odora,9a A.
senescens, and A. anisoprodium.9b The racemic com-
pound 10 was synthesized by photosensitized oxidation
of tryptamine prior to its isolation,16 but its absolute
configuration has not yet been determined. We presumed
the absolute configuration of natural (+)-109a to be
3aS,8aR by comparing with the specific rotation of
(�)-physostigumine17 and (�)-8, and tried the synthesis
of (3aS,8aR)-10 from (3 0S)-2-(1 0-nonen-3 0-yloxy)indol-
in-3-one 3b10 as follows. Silyl-enolization-Claisen rear-
rangement of (3 0S)-3b followed by hydrolysis with
LiOH produced (3S)-(�)-4 (86% ee) in 85% two-step
yield.18 O-TBS-silylation of (�)-414 followed by ozono-
lysis and NaBH4-reduction afforded alcohol (�)-7 in high
yield. Substitution of O-tosylate of (�)-7 with methyl-
amine accompanying transamidation of methylamino
intermediate19 provided (+)-anilinopyrrolidinone 9a.20

Desilylation of (+)-9a with TBAF followed by reduction
of 9b with AlH3ÆEtNMe2 in THF at 0 �C proceeded with
cyclization to give alline (3aS,8aR)-(+)-10,21 of which
the spectral data were identical with those of the natu-
ral9a and synthetic products.16 Since the optical rotation
of both synthetic 10 and natural alline indicated dextro-
rotatary, it is shown that natural alline (10) also has
3aS,8aR-configuration (Scheme 4).

In summary, we have presented a useful method for
enantioselective synthesis of optically active 3-(2 0-none-
nyl)-3-silyloxyindolin-2-ones 5 through Claisen re-
arrangement triggered by silylation of 2-(1 0-nonen-3 0-
yloxy)indolin-3-ones 3. We also transformed (+)-4
to (�)-furo[2,3-b]indoline 8 for confirming its absolute
configuration and achieved the first asymmetric total syn-
thesis of alline (10) to disclose its absolute configuration.
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